Simpler Bootstrap Estimation of the Asymptotic Variance of U-statistic Based Estimators∗
نویسندگان
چکیده
The bootstrap is a popular and useful tool for estimating the asymptotic variance of complicated estimators. Ironically, the fact that the estimators are complicated can make the standard bootstrap computationally burdensome because it requires repeated re-calculation of the estimator. In this paper, we propose a method which is specific to extremum estimators based on U -statistics. The contribution here is that rather than repeated re-calculation of the U -statistic-based estimator, we can recalculate a related estimator based on single-sums. A simulation study suggests that the approach leads to a good approximation to the standard bootstrap, and that if this is the goal, then our approach is superior to numerical derivative methods.
منابع مشابه
Nonparametric Inference Relative Errors of Difference-Based Variance Estimators in Nonparametric Regression
Difference-based estimators for the error variance are popular since they do not require the estimation of the mean function. Unlike most existing difference-based estimators, new estimators proposed by Müller et al. (2003) and Tong and Wang (2005) achieved the asymptotic optimal rate as residual-based estimators. In this article, we study the relative errors of these difference-based estimator...
متن کاملInference Methods on Income Inequality and Tax Progressivity Indices: An empirical application to Spanish data
This paper applies asymptotic and bootstrap inference methods for a set of non-linear inequality and progressivity indices. The non-degenerate U-statistic theory is applied to indices which are functions of several U-statistics. Generally, U-statistic variance estimators are difficult to compute. Formulae for a straightforward plug-in estimator of index variances have been derived. This is espe...
متن کاملIncomplete generalized U-statistics for food risk assessment.
This article proposes statistical tools for quantitative evaluation of the risk due to the presence of some particular contaminants in food. We focus on the estimation of the probability of the exposure to exceed the so-called provisional tolerable weekly intake (PTWI), when both consumption data and contamination data are independently available. A Monte Carlo approximation of the plug-in esti...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017